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Supply chain planning & forecasting

e Supply chain planning (SCP): “the forward-looking process of coordinating assets
to optimize the delivery of goods, services and information from supplier to
customer, balancing supply and [forecasted] demand” (Gartner Inc., 2019)

 Strategic: Network design
* Tactical: Sales and operations planning

* Goal SCP = max(service levels) & min(inventory costs)

e Critical input = accurate demand forecasts
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Operational demand forecasting (l)

Traditional demand forecasting
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Bullwhip effect
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Demand information becomes increasingly altered and
volatile moving upstream in the supply chain

Can lead to poor forecasts and supply chain inefficiencies

Four major causes of the BWE: (i) demand signal
processing, (ii) order batching, (iii) rationing and shortage
gaming, and (iv) price fluctuations and promotions
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Operational demand forecasting (I1)

Possible solution to counter the bullwhip effect

* “One remedy [...] is to make demand data at a downstream site available to the upstream site” — Lee et al. (1997)

* Use downstream data — from the manufacturer’s perspective in multi-echelon supply chain:

* Point-of-sale data: product-related data that is directly available to the retailers
» Sell-through data: product-related data that is directly available to the wholesaler = already a distorted picture of customer demand
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Empirical studies on use of downstream data

Author(s) Forecast Type of Modeling Modeling
Year Context horizons downstream data techniques approach
Hanssens, 1998 High-Tech 1 POS ECM Integration
P. Byrne & Heavey, 2006 Industrial 1 POS Simulation & TS Substitution
Hosoda et al., 2008 Retail 1 POS TS Substitution
Kelepouris et al., 2008 Retail 1 POS Simulation & TS Substitution
Williams & Waller, 2010 Retail 4,13 & 26 POS TS Substitution
Williams & Waller, 2011 Retail 1-13 POS TS & hierarchical Substitution
Trapero et al., 2012 Retail 1 POS TS, TSX & NN Integration
Williams et al., 2014 Retail 1-6 POS TS & VECM Both
Hartzel & Wood, 2017 Retail 1 POS NN Integration
Our study Pharma 1-5 Sell-through TS, TSX & ML Both

Modeling approaches:
e Substitution approach = substituting the directly observed prior demand by downstream demand
* Integration approach = integrate directly observed prior demand and downstream data
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Case study: data & bullwhip

o -» Manufacturer
Morser }
e US drug manufacturer operating in multi-echelon supply chain [ — BN o PR
Retailer ; 7\ Retailer
* Weekly data collected from Jan 2014 until Oct 2018 oreer
* 50 items el <
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e 205 observations on average ' T T T T T T -
* Only 3.7% of zero wholesaler demand observations on average Customers Customers

e Data sources
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= proxy for wholesaler demand

* Wholesaler sales = proxy for retailer demand
* Ending inventory positions @ wholesaler

* Open order quantities = total quantity wholesaler expected
to receive for the reporting period that was not delivered
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* One- to five-step ahead weekly forecasts
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Modeling — Forecasting methods & inputs

Time series Features
Method Manufacturer Wholesaler Seasonal Sell-through AR terms
shipments sales dummies information & trend
No information sharing (NIS) £ v v
ARIMA v v
Information sharing (1S) ETS-W v v
Substitution ARIMA-W v v
Information sharing (1S) ETSX v v v
Integration — TS ARIMAX v v v
LASSO v v v
Information sharing (IS) MLP v v v
Integration — ML SVR v v v
RF v v v

*  Unconditional forecasting setup - forecasting model is reformulated for each forecast horizon h

. Sell-through data: (maximum) 10 lags for wholesaler sales and wholesaler inventory, and 1 lag for open order quantities for h=1

. AR terms: 10 (forecasted) lags

*  Variable selection for TS methods — forward stepwise selection
* ML methods — hyperparameter specification via grid search and 3X10-fold cross-validation
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Evaluation

One- to five-step ahead out-of-sample forecasts
Train 70% - Test 30%

Rolling origin evaluation

Forecast accuracy (Petropoulos & Kourentzes, 2015)
» scaled Absolute Errors (with n the number of observations in in-sample period):

1y — [l
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* scaled Mean Absolute Error (SMAE): for each SKU, scaled Absolute Errors are averaged across
all periods in the out-of-sample test set
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Mean sMAE

Forecast horizon 1 p 3 ‘ 4 5 Overall
Best NIS ETS ETS ETS ETS ETS ETS
Mean sMAE 0.377 0.374 0.381 0.389 0.391 0.382
Best IS SVR SVR SVR LASSO SVR SVR * ETS outperforms ARIMA
Mean sMAE 0.330 0.353 0.357 0.361 0.364 0.355 e Best methods = IS methods (LASSO, SVR, RF, ETS-W
% improvement +12.5% +5.6% +6.3% +7.2% +6.9% +7.1% and AR|MA_W)
0.425. * Horizon 1 — LASSO and SVR
* Horizons h >1 - ETS-W, ARIMA-W and RF converge to
- ETS LASSO and SVR
-® ARIMA —> value of wholesaler inventory for h > 1?
0.400 ETSW
W ARIMAW e ETSX and ARIMAX show improvement for h =1 but
= ETSX not for longer forecast horizons
S 0.3751 ARIMAX
L LASSO * Poor performance of MLP
MLP
+SVR * SVR and LASSO perform quite similar
09501 <% RF => nonlinear relations not essential in this case
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Multiple comparisons with the best (SMAE)
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Variable importance analysis — LASSO
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Conclusions & future research

* Conclusions

* We provide empirical evidence of the value of sell-through data to increase short-term forecast accuracy at
manufacturer level = indirect evidence that its use allows to mitigate the impact of the bullwhip effect

* The results point to LASSO and SVR as best methods and provide evidence of an increase in forecast accuracy for
all horizons considered

* The largest increase in accuracy is observed for one-step ahead forecasts = short delivery lead times in case study

e Potential accuracy gains in other multi-echelon supply chains may depend on the characteristics of the involved
supply chain, and more specifically on the prevailing delivery lead times

* Future research
* Overarching study which takes into account both sources of downstream information: POS and sell-through data
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