

Guillaume Hochard, PhD Lead data scientist Time series Practice Lead ghochard@quantmetry.com

> Luis Blanche Data scientist

SWEET – Electricity Demand 4 Statistics vs. Machine Learning

Statistical and machine learning methods combination for improved energy consumption forecasting performance

Thessaloniki, ISF 2019 June 19th, 2019

Architecture

Forecasting at scale Millions of forecast

Data quality Missing data Outliers

Weather forecast

Energy forecasts sensitive to weather

Models

Performance vs. Complexity Features engineering

Retroaction loop

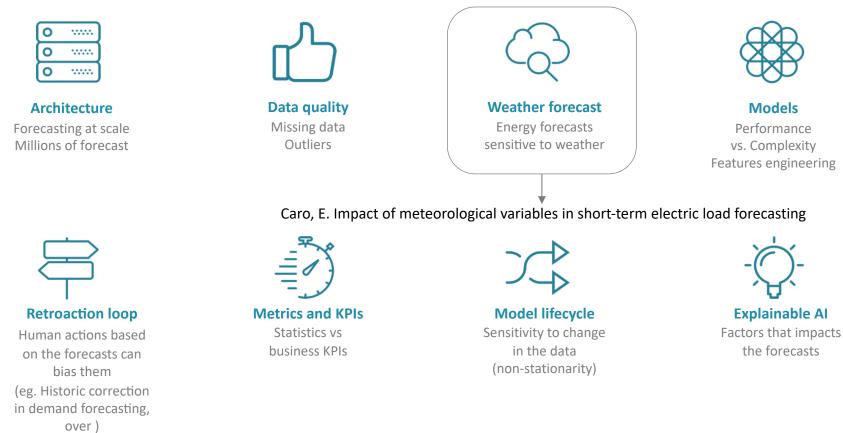
Human actions based on the forecasts can bias them (eg. Historic correction in demand forecasting, over) © Quantmetry 2019 | Diffusion interdite sans accord

Metrics and KPIs

Statistics vs business KPIs

Model lifecycle Sensitivity to change in the data (non-stationarity)

Factors that impacts the forecasts



© Quantmetry 2019 | Diffusion interdite sans accord

Architecture

Forecasting at scale Millions of forecast

Data quality Missing data Outliers

Weather forecast

Energy forecasts sensitive to weather

Models

Performance vs. Complexity Features engineering

Human actions based on the forecasts can

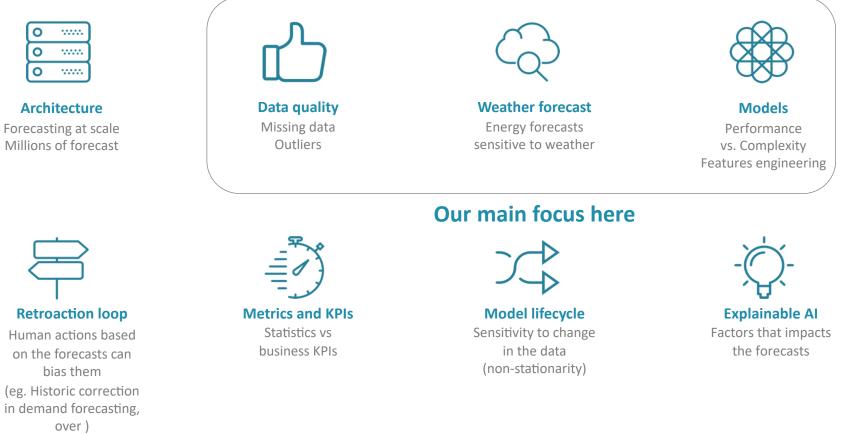
in demand forecasting,

OVER) © Quantmetry 2019 | Diffusion interdite sans accord

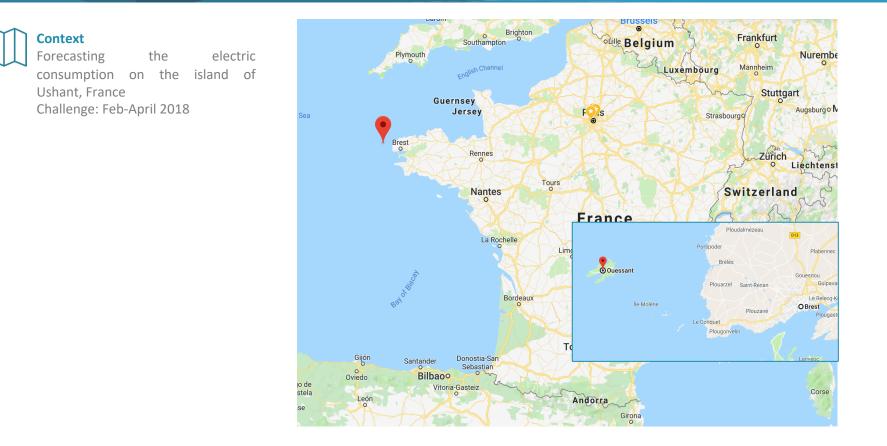
Model lifecycle Sensitivity to change in the data (non-stationarity)

Explainable Al Factors that impacts the forecasts

Wong L., Error metrics for Time Series Forecasting



© Quantmetry 2019 | Diffusion interdite sans accord



Context

Forecasting the electric consumption on the island of Ushant, France Challenge: Feb-April 2018

It looks like the Maldives... but in much more colder ⁽²⁾

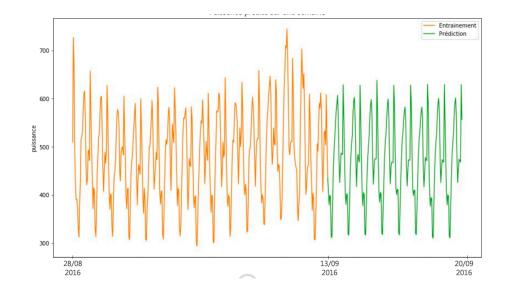
Context

Forecasting the electric consumption on the island of Ushant, France Challenge: Feb-April 2018

Data

Electric consumption: 1 time series on one year of hourly data

Meteorological time series : 11 3hourly time series over a year



Context

Forecasting the electric consumption on the island of Ushant, France Challenge: Feb-April 2018

Data Electric consumption: 1 time series on one year of hourly data

Meteorological time series : 11 3hourly time series over a year **Atmospheric Pressure**

Windspeed

Wind direction

Temperature

Nebulosity

...

© Quantmetry 2019 | Diffusion interdite sans accord

Context

Forecasting the electric consumption on the island of Ushant, France Challenge: Feb-April 2018

Data Electric consumption: 1 time series on one year of hourly data

Meteorological time series : 11 3hourly time series over a year

Objective

Predict the energy consumption of the island at the hourly level for the next week

Univariate, point multi-step forecast horizon (24*7 days = 168 steps)

Evaluation

• Mean Absolute Percentage Error : 50%

$$MAPE = \frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$

- A_t = Actual Value
- F_t = Forecast Value
- Scientific methodology and quality: 20%
- Clarity, presentation : 20%
- Innovation : 10%

Our entry benchmark – Machine Learning Driven

Baseline created with ML standard models

Motivation

- Encourage participants to use statistical methods to challenge this ML benchmark
- Encourage the combination/stacking of different methods

Model	ΜΑΡΕ	
		Modèles vs Puissance réelle
Support Vector Regression	13%	conso réelle
Multi Layer Perceptron	10%	SVR RFR LightGBR
LightGBM	6.5%	XGBoostR — XdBoostR — Multilayer percep — Single layer perce
Random Forest Regressor	6.3%	
XGBoost	6%	Sep 15 13h Sep 16 01h Sep 16 13h Sep 17 01h Sep 17 13h Sep 18 01h
Stacked with ElasticNet	5.9%	2016

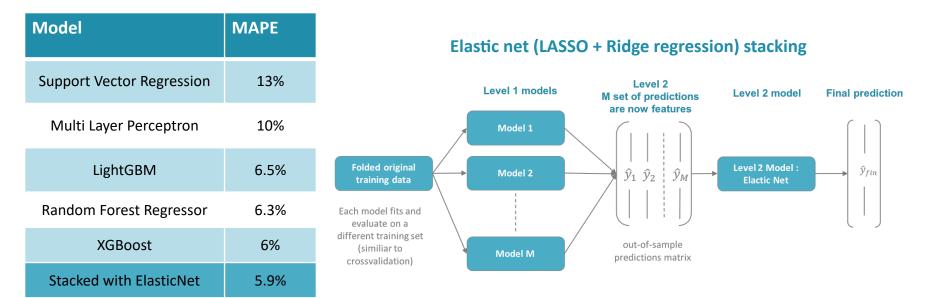
© Quantmetry 2019 | Diffusion interdite sans accord

Our entry benchmark – Machine Learning Driven

Baseline created with ML standard models

Motivation

- Encourage participants to use statistical methods to challenge this ML benchmark
- Encourage the combination/stacking of different methods



© Quantmetry 2019 | Diffusion interdite sans accord

Leaderboard of the competition

Team / Method		MAPE
Challenge Baseline		5.9%
ARMA + GBM		5.3%
Profile clustering		3.8%
ExtraTreeRegressor (ARIMA for missing values)		4 %
2 GBM (ensemble)	13	9.5%
Stacking of 6 GBM + 20 ExtraTreesRegressor	18	19.6%
LightGBM	20	22.4%

First insights

Performance vs rank : remember the evaluation grid (performance 50%)

Statistical methods and ML were combined and show interesting results

Leaderboard of the competition

Team / Method	Rank	MAPE
Challenge Baseline		5.9%
ARMA + GBM	1	5.3%
Profile clustering	3	3.8%
ExtraTreeRegressor (ARIMA for missing values)	6	4 %
2 GBM (ensemble)	13	9.5%
Stacking of 6 GBM + 20 ExtraTreesRegressor	18	19.6%
LightGBM	20	22.4%

Performance analysis

What makes a team perform better than another?

What are the choices that helped to improve performance?

ML based methods perform worse but not always => why?

Identify the best pratices on:

- Data cleaning
- Feature engineering
- Models

Unlike M4, we do not compare models performance but global approaches performance

Data preparation / cleaning best practices

1. Graphing and data exploration

Problem

Some peaks are observed and then disappear

Exploration

No feature to explain the peaks + No feature to explain the transition/no peak periods

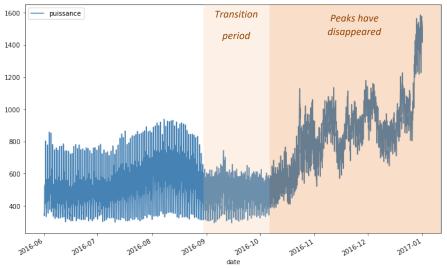
Why?

Network reconfiguration ? Measurement protocol?

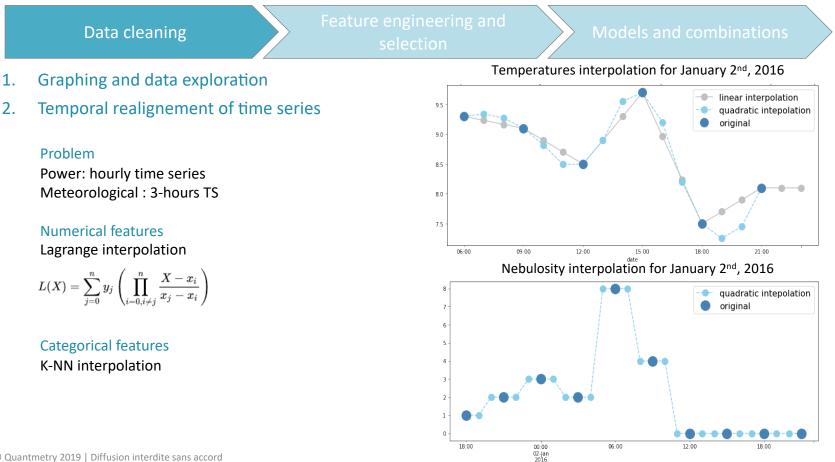
Solution

Restrict the dataset to the last period Transform the series to make it stationary

Power consumption time series and unexplained peak values



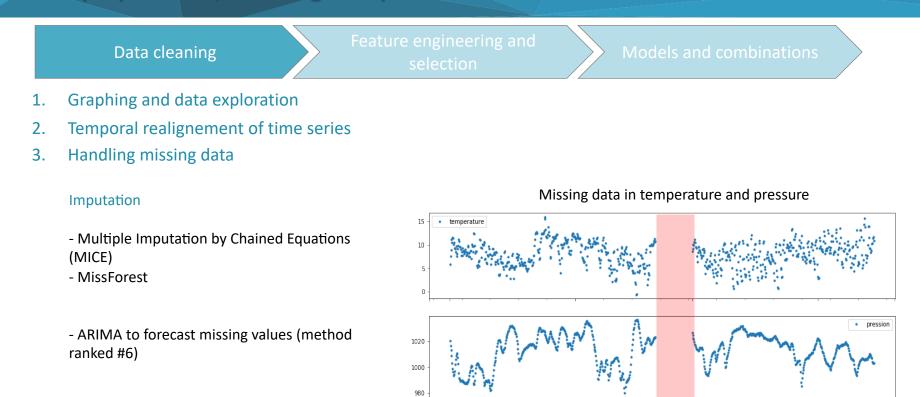
Data preparation / cleaning best practices



date

16

Data preparation / cleaning best practices



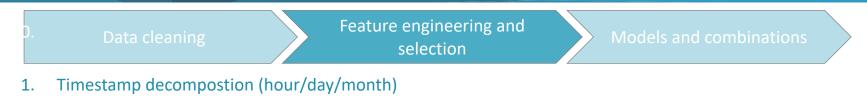
Jan 2016 Feb

Mai

date

Apr

1. Timestamp decompostion (hour/day/month)



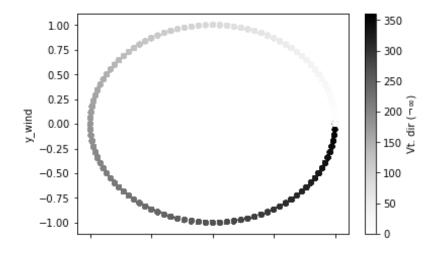
2. Encoding

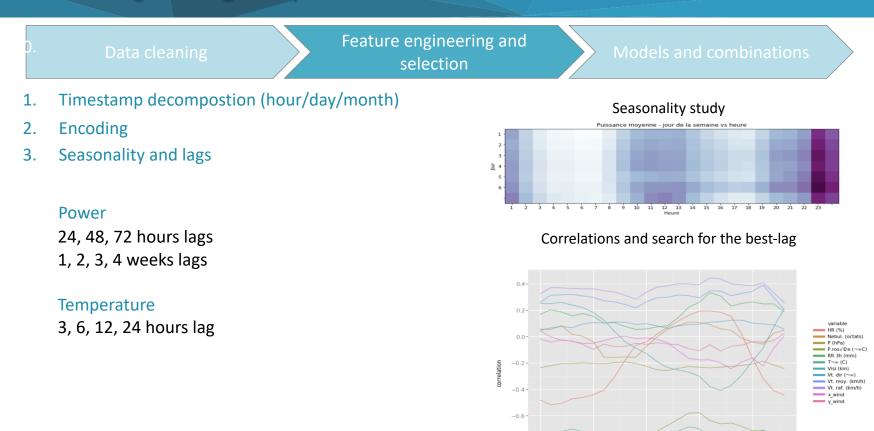
Circular features: cosine/sine transform

- Hour : 11pm is close to 1am
- Wind direction : 359° is close to 1°

Categorical features with high dimensionality Target encoding

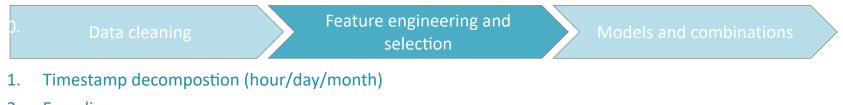
Cosine/sine encoding of wind direction





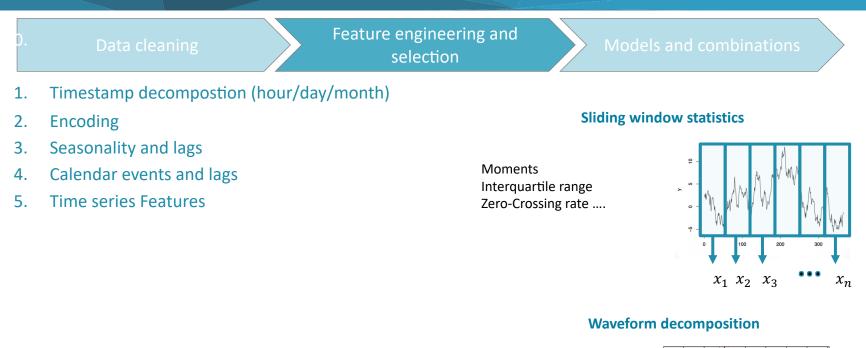
-0.8

heure



- 2. Encoding
- 3. Seasonality and lags
- 4. Calendar events and lags

- Tourism
- Week-end
- Day before holiday
- Holiday
- Day after holiday
- Summer holiday zones
- ...

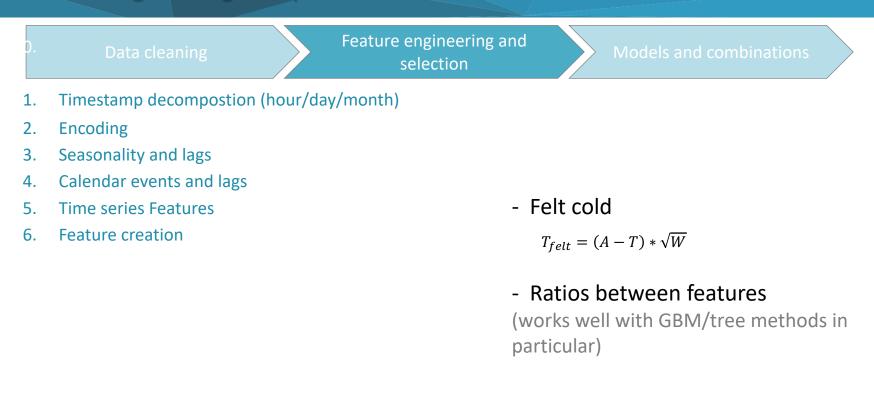


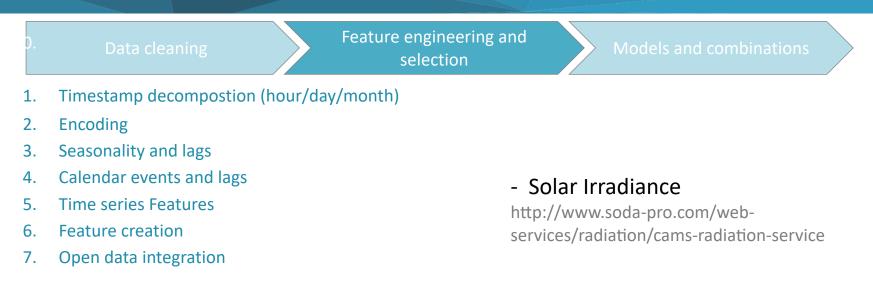
in Miller Marken marken Marken S Fourier/Wavelet Transform Keep only the highest coefficients mmmmmm

 A_2

 D_2

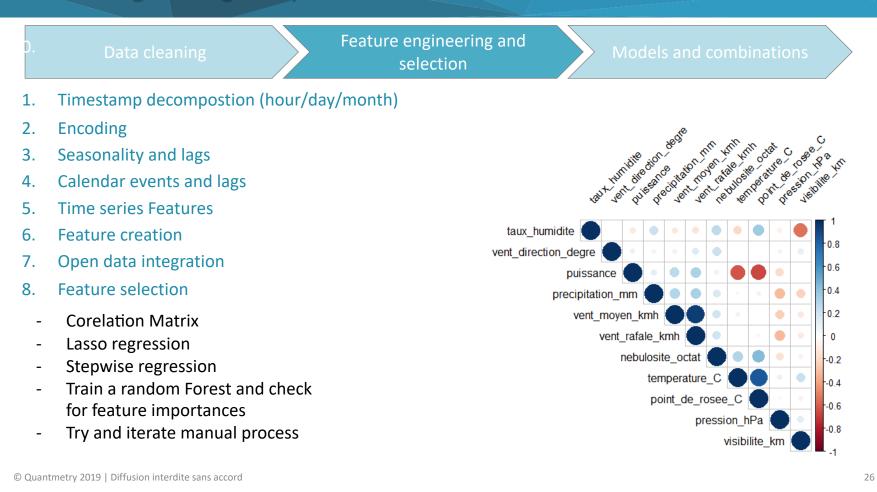
 D_1





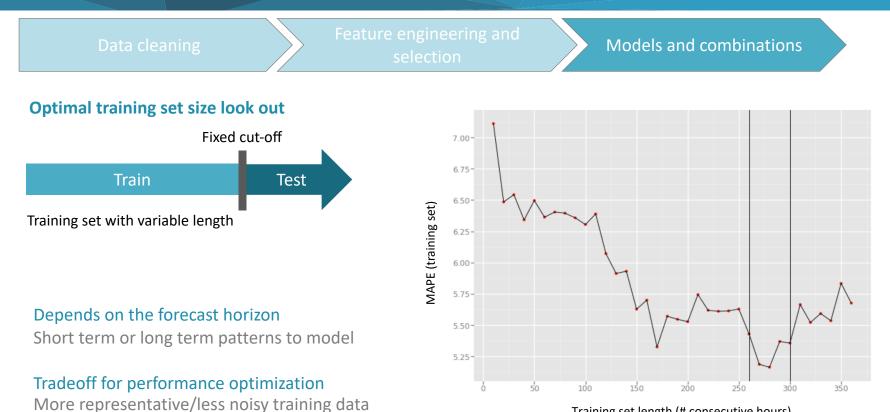
- Sea tide levels

https://uhslc.soest.hawaii.edu/data/?rq



- 6. Feature creation
- 7. Open data integration
- 8. Feature selection
- 9. Log/ Box-Cox transform of the target

Model training: shall I take all the data available?



Training set length (# consecutive hours)

© Quantmetry 2019 | Diffusion interdite sans accord

vs the number of samples to train on

Model of the winning method

Statistics and ML together

- Hybrid combination between ARMA and a Gradient Boosting model
- MAPE: 5.3%

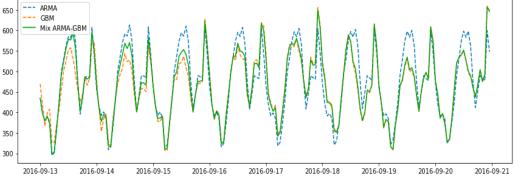
Intuition : ARMA is better at the begining of the forecasting horizon

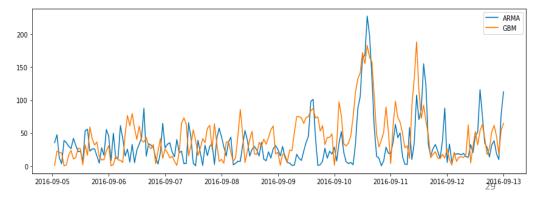
Combination details

-
$$y_{pred} = \alpha(t)y_{pred,ARMA} + (1 - \alpha(t))y_{pred,GB}$$

- $\alpha(t) = e^{-\frac{t}{\lambda}}$

λ is solved by optimization





Model of the winning method

Data cleaning		Feature engineering and selection		Models and combinations	
---------------	--	-----------------------------------	--	-------------------------	--

Statistics and ML together

- Hybrid combination between ARMA and a Gradient Boosting model
- MAPE: 5.3%

Intuition : ARMA is better at the begining of the forecasting horizon

Combination details

-
$$y_{pred} = \alpha(t)y_{pred,ARMA} + (1 - \alpha(t))y_{pred,GB}$$

- $\alpha(t) = e^{-\frac{t}{\lambda}}$

```
\lambda is solved by optimization
```

from scipy.optimize import minimize

```
def mix_pred(param, y_arma, y_gb, linear):
    if linear:
        alpha = param
    else:
            x = np.linspace(0, 1, len(y_arma))
            alpha = np.exp(-x / param)
        y_mix = (alpha * y_arma + (1-alpha)*y_gb)
    return y mix
```

```
def find_optimal_mix(param, y_true, y_arma, y_gb, linear=True):
    y_mix = mix_pred(param, y_arma, y_gb, linear)
    mape = mean_absolute_percentage_error(y_true, y_mix)
    return mape
```

```
y_mix = mix_pred(slope, local_test['y_hat_arma'], y_pred, is_linear)
print('Best param: %.2f' % (slope))
print('MAPE: %.2f%%' % (result.fun))
```

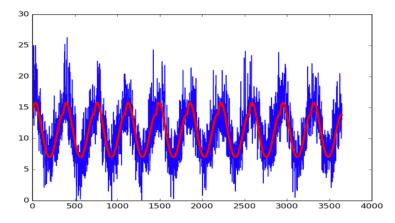
More ideas on ML and statistical models combination

Statistics and ML together: more ideas

Additive model

- P = Ps + Pm + N
- Seasonality part: *Ps*
- Part sensitive to external regressors: *Pm*
- Noise: N

Statistical model to predict Ps (seasonality component)



Machine learning model

- **Prediction of the residual component** *Pm* (time series without *Ps*).
- Impacted by meteorological, calendar (holidays, events) features
- ML models (RF, GB, XGBoost, etc.) ou DL (MLP, LSTM, CNN)

Statistics and ML together: more ideas

Additive model

- P = Ps + Pm + N
- Seasonality part: *Ps*
- Part sensitive to external regressors: *Pm*
- Noise: N

Parametrization of statistical models

Neural network to estimate ARMA parameters

Callot L., On the paramatrization of simple autogressive models with neural networks

Key learnings of this competition

Data Preparation & Feature Engineering

- Diagnostic by visualisation: know your data
- Missing values: different strategies w.r.t. data types and the data itself
- Feature engineering and open data help !!! (don't rush to the model too soon)

Models and methods

- Our pure ML benchmark was beaten by hybrid but also pure ML methods
- Hybrid methods makes better predictions (as in M4 results)
- Statistical and ML methods are complementary

Profi M., ISF 2019: Combinations of ML and traditional approches to increase accuracy in forecasting

- Model is only one part of the performance improvement journey
- Good performance = clean data, rich data, smart feature engineering and selection, model combination

Make your own challenge

- Interesting for getting new ideas
- Even with 20-30 teams (not necessary to go to Kaggle for challenges)

© Quantmetry 2019 | Diffusion interdite sans accord



We're hiring!

ghochard@quantmetry.com

in Guillaume Hochard