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Abstract — This paper espouses an innovative approach to 
predict the day-ahead electricity prices for the single electricity 
market (SEM) in Ireland. An upsurge in demand response and the 
proliferation of distributed energy resources continue to drive the 
requirement for more accurate and computationally efficient 
models for forecasting the system marginal price (SMP).  

 

This paper presents such a model, a k-means, Support Vector 
Machine and Support Vector Regression (k-SVM-SVR) model. 
While obtaining prediction accuracy comparable with the best-
known models in the literature, the k-SVM-SVR model requires 
limited computational effort. The computational efficiency is 
achieved by eliminating the use of a price feature selection process, 
which is commonly used by existing models in the literature. The 
developed model achieved approximately 20% improvement and 
reduced error variances over the existing predictions available to 
market participants in Ireland. 

 

The k-SVM-SVR model is tested using SMP electricity market 
data from the periods 2010–11, 2015-16 and 2016–17 respectively. 

 

Keywords: Energy Price Forecasting, Single Electricity Market 
(SEM) and Single Marginal Price (SMP) 

I. INTRODUCTION 

Deregulation of the electricity sector has led to the development 

of a sophisticated and competitive market structure [1] . In the 

market pool [known as a Power eXchange (PX)], power 

producers [generating companies (GENCOs)] submit 

generation bids and their corresponding bidding prices, and 

consumers [consumption companies (CONCOs)] do the same 

with consumption bids [2]. The market operators use a market-

clearing tool to clear the market. This tool is normally based on 

single-round auctions, and considers each hour / half-hour of 

the market horizon one at a time to give an hourly / half-hourly 

Market Clearing Price (MCP) or “spot price” [1]. Alternatively, 

the companies that wish to hedge against the risk of daily price 

volatility can do so through physical bilateral over-the-counter 

(OTC) contracts [3].  

The day-ahead forecast of spot prices is the main requirement 

for market participants [4] and is therefore the focus of this 

research paper. Energy service companies (ESCOs) buy energy 

from the PX and from bilateral contracts to sell it to their clients. 
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Having reliable daily price forecast information enables 

producers or ESCOs to delineate proficient contacts and make 

better financial decisions to maximise profits [5]. Consumers 

have to make similar decisions on buying energy through 

bilateral contracts, or from the PX. Additionally, if a consumer 

has self-production capability, it can use it to protect itself 

against high prices in the pool [2][6]–[8]. For these types of 

portfolio decisions, it is desirable to have forecasts of the next-

days’ hourly or half-hourly average price values available. 

Furthermore, the accuracy of day-ahead electrical unit price 

estimates is of strategic importance for the cost-effective return 

on power generator capital investment with a consequential 

beneficial economic return on electrical network operation. 

Driven by the importance of future prices and the complexities 

involved in determining them, detailed modelling and 

forecasting of electrical unit pricing has become a major 

research field in electrical engineering [1].  

However, unlike load forecasting, electricity spot prices tend to 

exhibit extreme volatility, popularly identified as spikes.  

Eydeland et al. [9] have suggested that the main reason behind 

the spikes in the electricity prices are high network transmission 

grid, unanticipated high load and bidding behaviour of market 

participants. Additionally, non-storability, seasonal behaviour 

and transportability are the major issues which make electricity 

prices so specific [10]. These issues make it impossible to treat 

electricity on a par with any other commodity and forbids the 

application of forecasting methods common in other 

commodity markets [5]. Consequently, electricity price 

forecasting is much more complex because of the unique 

characteristics and uncertainties in operation as well as bidding 

strategies [11]. Although electricity prices can appear 

unpredictable in their behaviour, Singh et al. [12] state that they 

are non-random in nature making it possible to identify 

underlying patterns and  periodicities based on the historical 

data and forecasts.  

    In this work, the focus is on the Irish Single Electricity 

Market (SEM) in Ireland. The paper presents a hybrid k-SVM-

SVR model, comprising the k-means, the Support Vector 

Machine (SVM) and the Support Vector Regression (SVR) 

algorithms. Essentially, implementing the SVM algorithm as 

both a classifier and predictor tool to accurately predict day-



 

ahead prices for the SEM. With the help of data from the Single 

Electricity Market Operator (SEMO), Eirgrid Group, an 

analysis of the daily €/MWh prices for day-ahead price 

forecasting was performed.  

The paper is organised as follows. In section 2, an overview of 

the Irish SEM is presented. Section 3 articulates the stages 

within the proposed k-SVM-SVR model. The forecast results 

from the k-SVM-SVR model and a comparative analysis are 

presented in Section 4. Concluding remarks are placed in 

Section 5. 

II. OVERVIEW OF THE IRISH SINGLE ELECTRICITY MARKET 

The SEM in Ireland is a gross mandatory auction-based market 

or pool. Under the pool arrangements, the sale and purchase of 

electricity occurs on a gross basis with all generators receiving 

and all suppliers paying the same price for electricity sold into 

and bought via the pool in a given Trading Period (TD). Figure 

1, along with the subsequent paragraphs, provide a brief 

overview of how the existing market runs, from initial 

Commercial Offer Data (COD) and Technical Offer Data 

(TOD) submissions by participants commencing up to 29 days 

before Trading Day (TD-29) until publishing of the Ex-Post 

Initial Schedule four days after Trading Day (TD+4). 

 
Figure 1: Existing SEM structure in Ireland 

 

Similar to Grimes et al. [13], the two primary runs by the 

SEMO’s market scheduling and pricing software, relevant to 
the developed model are as follows: 

 

1. The Ex-Ante (EA1) run, which is carried out one day prior 

to the TD being scheduled – this releases a schedule of half-

hourly forecasted System Marginal Price (SMP) produced 

by the SEMO for the coming TD. The SMP composes the 

Shadow price + the Uplift price. The Shadow Price 

comprises the cost of the marginal MW required to meet 

demand in a TD within the context of an unconstrained 

schedule. A Generator Unit that can increase its generation 

in order to meet demand is considered to be marginal. The 

Uplift cost relates to the operating costs associated with 

Start-Up-Costs and No-Load-Costs that a generator will 

need to recover. 

 

2. The Ex-Post Initial (EP2) run, carried out four days after the 

TD which is being scheduled for. The system marginal 
prices produced in the EP2 run are used for weekly 

invoicing and the SMP determined in the EP2 run for a 

given half hour trading period is the price applicable to both 

generators and suppliers active in such a trading period. 

 

Each of the five auction categories is held once daily. The Ex-

Ante One (EA1) is held at 09:30 on the day prior to the TD of 

interest, i.e. TD-01. The EA1 auction covers the delivery hours 

of 06:00 to 06:00 i.e. the full Trading Day. The first ‘intraday’ 

auction is called the Ex-Ante 2 (EA2) auction and is held at 

11:30 on TD-01 which cover the delivery hours of 06:00 to 

06:00, which also covers the full Trading Day. The second 
intraday auction is called the Within-Day (WD1) auction and 

is held at 08:00 within the TD and covers the delivery hours of 

18:00 to 06:00, i.e. the second half of the Trading Day. Ex-Post 

Indicative (EP1) provides the market with indicative 

settlement values regarding the final price and schedule. As 

previously discussed, the Ex-Post Initial (EP2) provides 

market participants with final price and schedule [14]. 

 

Imprecise estimation of SMPs can lead to inappropriate 

quantity bidding strategies by the generators, over/under supply 

of planned generation, non-optimal demand response, rise in 
cost of meeting demand, and an increase in real time operation 

challenges. Hence, it is imperative to have a methodology to 

precisely predict real time (and day-ahead) SMPs [15]. 

 

 
Figure 2(a): Distribution of the 2015 half-hourly SEM EP2 €/MWh data 

 

 
Figure 2(b): 3D plot of the 2015 half-hourly SEM EP2 €/MWh data 



 

This section will take an in-depth look at the price volatility 

within the SEM and the challenge to accurately forecast for the 

energy market in Ireland. The study of the SEM EP2 €/MWh 

price data will focus on the years 2015 and 2016 respectively. 

Essentially, 2015 data will be used for model training and 2016 
data will be used for model prediction validation and analysis. 

 
 

 
Figure 2(c): Distribution of the 2016 half-hourly SEM EP2 €/MWh data 

 

 
Figure 2(d): 3D plot of the 2016 half-hourly SEM EP2 €/MWh data 

 
 

Figures 2(a) and 2(c) detail a statistical distribution of the half-

hourly SEMO SEM EP2 €/MWh for 2015 and 2016 

respectively. While Figures 2(b) and 2(d) present a 3D 

perspective of same. The aforementioned plots, along with the 

statistical metrics in Table 1 below, clearly portray the daily 

periodicities and the volatility that exists within the energy 

market, thereby indicating the difficulty in deriving accurate 

day-ahead predictions for the Irish SEM.  

 
Table 1: Statistics of the Irish SMP (€/MWh) data for 2010-11 and 2015-17 

Year Min. Max. Mean Median St. Dev. 

2010 -88.12 766.35 53.85 46.40 35.49 

2011 0.00 649.48 63.18 54.45 35.79 

2015 0.00 740.26 50.74 43.69 26.04 

2016 0.00 557.94 41.82 36.73 25.23 

2017 -85.35 715.17 47.41 42.08 25.83 

   

In order to perform rigorous model testing and validation, and 

to facilitate the comparison of the models performance with 

results elsewhere in the published literature [13], data for the 

years 2010-11 and 2015-17 respectively have been used.  

 III. K-SVM-SVR PRICE FORECASTING MODEL 

 

    SMPs can be forecasted using time series information of 

SMP and other variables such us electricity demand, 
temperature, wind energy, and fuel prices, etc. Many models in 

the open literature utilise feature selection and data selection 

techniques [16]. For large data sets, feature selection techniques 

(e.g., backward and forward selection, stepwise selection) may 

become computationally challenging [15].  

 

In this paper, as described in [15], the authors applied a 

computationally simpler feature selection method that uses 

signals from the autocorrelation and partial autocorrelation 

functions. Thus, for the SMP forecast at time t+1, features 

including previous SMP values, for all significant lags in the 

ACF (see Figure 3) plot along with the attributes with seasonal 
information from the PACF (see Figure 4) plot are utilised. 

 

 
Figure 3: Autocorrelation function (ACF) for 2015 SEMO SMP 

 

 

 
Figure 4: Partial autocorrelation function (PACF) for 2015 SEMO SMP 

 

 
Figure 5: Schematic of k-SVM-SVR model 



 

Before deriving the SVR models, the SMP training data is 

classified into k clusters of different prices. For each price 

cluster, a separate SVR model is developed. The forecast for 

time t + 1 is obtained from one of these k-SVR models. If the 

current time is t, which the actual SMP is known, the forecast 
for the next t + n (n represents the number of future periods to 

forecast) periods is obtained as follows. The expected SMP for 

the period t + 1 is assigned to one of the k clusters using a SVM 

model. Figures 6 and 7 respectively, detail a schematics for the 

k-means algorithm and the SVM model architecture. 

 

 
Figure 6: Schematic of k-means algorithm architecture 

 

Then the SVR model for the corresponding cluster is used to 

obtain the SMP forecast for period t + 1. The forecast for period 

t + 1 is considered as the actual SMP for forecasting for period 
t + 2. This process continues until period t + n is attained. A 

depiction of the proposed model is shown in Figure 5. 

A step-by-step summary of the training and testing of the model 

to forecast the price at time t + n is given as follows. 

 

Training: 

 
(1) Perform k-means using the historical data in order to 

identify the price clusters. 

(2) Select the appropriate number of clusters beyond which the 

decrease in the sum of squares within the clusters is below a 

chosen tolerance level. 

(3) For each price cluster, train a SVR model for prediction. 

(4) Train a SVM model for classification using information of 

all k clusters. 

 

Testing: 

 

Given the trained SVM and SVR models, consider a forecast 
horizon period of t + hz. Set hz = 1. 

 

(1) Classify the SMP for t + hz as belonging to one of the k 

Cluster groups. 

(2) Obtain the prediction for period t + hz using the SVR model 

for the cluster identified or selected in step 1 above. 

(3) Use the forecast value for t + hz to predict the SMP for 

t + hz + 1. 

(4) Set hz <  -hz + 1. Repeat steps 1 through 3 till hz = n. 

 

For training purposes, the information of the past d days of the 
forecast day, and a window of D days of the same forecast day 

in the previous year (±d days) are used as training data for the 

SVM and SVR models. 

 

 
Figure 7: Generic schematic of a SVM model architecture [17] 

 

IV. COMPARATIVE MODEL ANALYSIS 

In order to benchmark the developed forecast model with Irish 

SEM data, the 2011 SEMO SEM data set adopted by Grimes et 

al [13] was utilised. In [13] the authors developed two SVR-

based algorithms to forecast with a day-ahead time horizon. 

They used the SEMO SEM EA1 price as an indicative estimate 



 

of the final value of the SEM EP2 price. Their two constructed 

models were then compared to the raw SEMO SEM EA price 

estimates for February, April and June 2011. These results have 

been summarised in the table below: 

 
Table 2: Mean Square Error (MSE) for predictions from the developed k-SVM-

SVR model versus SEMO, FM1 and FM2 model forecasts for 2011 

Method MSE % Improvement 

SEMO EA1 1086.25*  

Forecast Model (FM) #1 [13] 821.01 24.41% 

Forecast Model (FM) #2 [13] 781.72 28.03% 

k-SVM-SVR Model 712.89 34.37% 
 

*Based on SEMO EA1 v EP2 prices for February, April and June 2011 [18] 

MSE = 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑛
∑(Ŷi − Yi)

2
𝑁

i=1

 

𝑌̂𝑖 and 𝑌𝑖 denote the real and forecast SMP values, 𝑁 the number of prediction periods and n the 

number of days. 

 

Considering the mean square error (MSE), Table 2 

demonstrates that the k-SVM-SVR model outperforms the two 

proposed SVR-based models, FM1 and FM2 respectively, as 

described by Grimmes et al. [13] developed by University 

College Dublin (UCD). The two UCD models achieved a 

24.41% and a 28.03% improvement over the simple utilisation 

of the EA1 SEM price as a prediction estimate for the final EP2 

price. The developed model, described in Section III, based on 

the same period of February, April and June 2011 accomplished 
a 34.37% improvement over the existing EA1 price estimates. 

Figures 8(a) and 8(b) show the predictive performance of the 

SEMO EA1 estimates and the k-SVM-SVR model against the 

SEMO EP2 €/MWh data for a random day in February and 

April 2011. 

 

 
 

Figure 8(a): EP2 v EA1 v k-SVM-SVR €/MWh data for 02.02.2011 

 

 
 

Figure 8(b): EP2 v EA1 v k-SVM-SVR €/MWh data for 24.04.2011 

 

A further benchmark of the developed model, using a more 

recent SEMO SEM data set was also used. The k-SVM-SVR 

model was configured in order to predict the day-ahead EP2 

price data for 2016 and 2017. Again, as per [13], the raw SEMO 

SEM EA data served as a benchmark to forecast the EP2 prices. 

The results are outlined in the Table 3 below. 

 
Table 3: Mean Square Error (MSE) for predictions from the developed k-SVM-

SVR model versus SEMO model forecasts for 2016 and 2017 

Year Method MSE % Improvement 

2016 
SEMO EA1 457.61*  

k-SVM-SVR Model 372.57 18.60% 

2017 
SEMO EA1 565.99*  

k-SVM-SVR Model 488.03 13.77% 
 

*Based on SEMO EA1 v EP2 prices for the full year [18] 

MSE = 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑛
∑(𝑌̂𝑖 − 𝑌𝑖)

2
𝑁

𝑖=1

 

Here, the k-SVM-SVR used 2015/16 data for model training. 

Subsequently day-ahead predictions from the model for 

2016/17 showed ≈14-19% improvement over utilising the raw 

SEMO EA1 €/MWh SEM data as an EP2 price estimate.  

 

The mean absolute percentage error (MAPE) is among the most 

common measures used to evaluate forecast performance. 

MAPE is defined as the average of the absolute value of the 

error forecast, real minus predicted, over the real value. Authors 

refer to this as MAPE1. Some authors have redefined the 

concept of the MAPE due to the highly volatile nature of 

electricity prices [19]. Authors will refer to this as MAPE2. In 

expressions for MAPE1 and MAPE2, 𝑌̂𝑖 and 𝑌𝑖 denote the real 

and forecast SMP values respectively and 𝑁  denotes the 

number of periods predicted. Other performance measures that 

are also presented in the literature are the forecast mean square 
error (FMSE) or root mean square error (RMSE). In order to 

allow ease of comparison with any existing and future work, 

these statistical metrics for 2016 and 2017 data in relation to the 

developed k-SVM-SVR model are shown in Table 4 [15][20]. 

 
Table 4: MAE, RMSE, MAPE1 and MAPE2 for predictions from the developed 

k-SVM-SVR model versus SEMO model forecasts for 2016 and 2017  

Year Model MAE RMSE MAPE1 MAPE2 

2016 
SEMO EA1* 8.67 15.12 18.01 20.14 

k-SVM-SVR 8.28 14.55 17.21 19.24 

2017 
SEMO EA1* 9.92 17.90 19.50 20.28 

k-SVM-SVR 9.76 17.36 19.34 19.89 
 

* Based on EA1 v EP2 prices for the full year [18] 
 

 

 
Figure 9: RMSE of k-SVM-SVR, SEMO EA1 and Naïve model for 2017 



 

MAE = Mean Absolute Error =  
1

𝑁
∑|𝑌̂𝑖 − 𝑌𝑖|

𝑁

𝑖=1

                                                

 

𝑅𝑀𝑆𝐸 = Root Mean Square Error =  √
1

𝑁
∑(𝑌̂𝑖 − 𝑌𝑖)

2
𝑁

𝑖=1

  

MAPE1 = Mean Absolute Percentage Error =  
1

𝑁
∑

|𝑌̂𝑖 − 𝑌𝑖|

𝑌𝑖

𝑁

𝑖=1

 

 

MAPE2 = Mean Absolute Percentage Error =  
1

𝑁
∑

|𝑌̂𝑖 − 𝑌𝑖|

𝑌𝑖
𝑎

𝑁

𝑖=1

                    

where         𝑌𝑖
𝑎 =  

1

𝑁
∑ 𝑌𝑖                                                                  

𝑁

𝑖=1

                       

 

Using available 2017 yearly data, Figure 9 presents the monthly 

RMSE values for the superior k-SVM-SVR model developed 

and contrasts it, for benchmarking purposes, with the existing 
SEMO EA1 day-ahead price estimates along with the energy 

price estimates from a conventional Naïve day-ahead model.  

V. CONCLUSIONS 

    This paper discusses a k-SVM-SVR model applied to the 

Single Electricity Market in Ireland to forecast accurate day-

ahead €/MWh energy prices. Data from 2010-11, 2015-16 and 

2016-17 respectively was used for training, testing and 

comparison purposes. For the majority of cases, results showed 

that the k-SVM-SVR model provided comparable forecast 

errors with reduced error variances over the existing predictions 

available to market participants. These decreased variances can 

potentially translate into large financial saving to electricity 

utility traders. Future work will investigate the application of 
such a model to other energy markets including the now 

Integrated-Single Electricity Market (I-SEM) in Ireland. 
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