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In this in-person workshop, we aim at covering neural forecasting methods from ground up, starting
from the very basics of deep learning, to well-established deep forecasting model such as DeepAR
(Salinas et al., 2019) to more recent forecasting models.

The workshop workshop will be in-person, with a mix of theoretical lectures and practical sessions. In
the lectures, we will focus on the fundamentals of deep learning such as the various architecture
types (e.g. feed-forward, convolutional, recurrent neural networks and transformers) and the most
important breakthroughs that established the strength of neural networks. Then, we will see how deep
learning can be applied to forecasting by reviewing several state-of-the-art neural forecasting models
(e.g., WaveNet (Van Den Oord et al., 2016), DeepAR (Salinas et al., 2020), NBEATS (Oreshkin et al.,
2019) and the sequence-to-sequence model family [7, 10]). Furthermore, we will dive into recent work
that combines neural networks with probabilistic models such as deep state space (Rangapuram et
al., 2018) and deep factor (Wang et al., 2019) models. Finally, we will introduce GluonTS (Alexandrov
et al., 2020), a time series modeling toolkit primarily aimed at forecasting which is available in
open-source.

To complement the lectures, we will offer practical sessions for the workshop participants where we
will rely on GluonTS (Alexandrov et al., 2020).
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Target Audience and Requirements

This workshop is appropriate for anyone with a solid programming background and a general interest
in neural networks. Prior knowledge in neural networks is recommended but not necessary.
Knowledge of forecasting, basic statistical and machine learning knowledge are a prerequisite. For
the practical material, python programming knowledge is essential.

We will inform the participants of more detailed set-ups closer to the workshop.
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