In this virtual workshop, we aim at covering neural forecasting methods from ground up, starting from the very basics of deep learning up to recent forecasting model improvements such as [5].

Given that the workshop is fully virtual, we will primarily rely on lectures. In these, we will focus on the fundamentals of deep learning such as the various architecture types (e.g. feed-forward, convolutional and recurrent neural networks) and the most important breakthroughs that established the strength of neural networks. Then, we will see how deep learning can be applied to forecasting by reviewing several state-of-the-art neural forecasting models (e.g., WaveNet [8], DeepAR [6], NBEATS [3] and the sequence-to-sequence model family [7, 10]). Furthermore, we will dive into recent work that combines neural networks with probabilistic models such as deep state space [4] and deep factor [9] models, and bayesian techniques such as [2]. Finally, we will introduce GluonTS [1], a time series modelling toolkit primarily aimed at forecasting which is available in open-source.

To complement the lectures, we will provide notebooks for the workshop participants to interactively explore some of these ideas themselves. Given that the workshop is workshop, this will be self-study largely. Notebooks will rely on GluonTS [1].

Target Audience and Requirements

This workshop is appropriate for anyone with a solid programming background and a general interest in neural networks. Prior knowledge in neural networks is recommended but not necessary. Knowledge of forecasting, basic statistical and machine learning knowledge are a pre-requisite.

For the practical material, python programming knowledge is essential.
References

