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In this in-person workshop, we aim to cover neural forecasting methods from the 

ground up, starting from the very basics of deep learning to well-established deep 

forecasting model such as DeepAR (Salinas et al., 2019) to more recent forecasting 

models, including foundation models for which we’ll review selected models. 

The workshop will be in-person, with a mix of theoretical lectures and practical 

sessions. In the lectures, we will focus on the fundamentals of deep learning such as 

the various architecture types (e.g. feed-forward, convolutional, recurrent neural 

networks and transformers) and the most important breakthroughs that established 

the strength of neural networks. Then, we will see how deep learning can be applied 

to forecasting by reviewing several state-of-the-art neural forecasting models (e.g., 

WaveNet (Van Den Oord et al., 2016), DeepAR (Salinas et al., 2020), NBEATS 

(Oreshkin et al., 2019) and the sequence-to-sequence model family [7, 10]). We will 

introduce AutoGluon-Timeseries, (Shchur et al., 2023) an open-source toolkit for 

easily training highly accurate probabilistic forecasting models, which automatically 

combines and tunes both statistical forecasting and deep learning models from 

frameworks such as GluonTS (Alexandrov et al., 2020) and in particular foundation 

models which we will also review in some depth.     

To complement the lectures, we will offer practical sessions for the workshop 

participants where we will rely on AutoGluon. 

          

Target Audience and Requirements 

This workshop is appropriate for anyone with a solid programming background and a 

general interest in neural networks. Prior knowledge of neural networks is 

recommended but optional. Knowledge of forecasting, and basic statistical and 

machine learning knowledge are a prerequisite. For the practical material, Python 

programming knowledge is essential. 

We will inform the participants of more detailed set-ups closer to the workshop. 
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